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Behavior of model cohesive grains in the dense flow regime
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Résumé :

Nous étudions par dynamique moléculaire la loi de comportement d’écoulements denses de grains cohésifs, en
considérant un modèle de cohésion simple et générique qui rend compte de résistance maximale à la traction des
contacts. La géométrie du cisaillement homogène met en évidence une dépendance simple du frottement effectif
en fonction de l’état de cisaillement et de l’intensité de la cohésion. Ces variables se résument en deux nombres
sans dimension, le nombre d’inertie, qui compare l’inertie des grains à la force de confinement, et le nombre de
cohésion, qui compare les forces attractives à ces même forces de confinement. Dans le cas d’un écoulement sur
pente, l’augementation du frottement avec la cohésion, d’autant plus sensible près de la surface libre, provoque la
formation d’un écoulement bouchon.

Abstract :

Using molecular dynamics simulations, we study the constitutive law of dense flows of cohesive grains. We focus
on a simple cohesive model that tacks into account the maximal attractive force between grains. The study of
plane shear flows highlights a simple dependance of friction on both shear state and cohesion intensity. These
two parameters are described by two dimensionless numbers, respectively the inertial number which compare the
inertia of grains with the prescribed confinement force, and the cohesion number which compare attractive force
with the prescribed confinement force. In the case of flow down a slope, this cohesion enhanced friction leads to
plugged flow since cohesion intensity increases near the free surface.
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1 Introduction

Dense flows of cohesionless grains have a rich rheological behavior highlighted by several
studies motivated by fundamental issues as well as practical needs (see for example the review
of Gdr Midi , 2004). However, granular materials outside of laboratory often present significant
inter-particular cohesive forces resulting from different physical origins :van der Waals forces
for small enough grains such as clay, powders (Rietema , 1991) or third body in tribology
(Iordanoff et al., 2002),capillary forcesin humid grains such as unsaturated soils or wet snow,
andsolid bridgesin sintered powders or when liquid meniscuses freeze. How does a cohesive
force affect dense granular flows ? Up to now, this question is largely ignored. Here we present
a numerical study of dense flows of a model cohesive granular material which tack into account
the common feature of any cohesive grains : the maximum attractive force of contacts. In
section § 2, simulated systems are describes and the dimensionless numbers which control them
are identified. Homogeneous plane shear flows give a direct access to the constitutive law as
function of cohesion intensity, which validity is then checked for flows down inclined, closer to
practical needs but more complex since stresses vary along depth (§ 3).
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2 Simulated systems

The standard molecular dynamics using here is a very common method to simulate flows of
grains (da Cruzet al., 2005; Brewsteret al., 2005; Aarons and Sundaresan , 2006). It ensures to
easily control and vary the parameters that describe grains, and gives access to properties within
the flows. However, computational times limits the number of grains per flow to thousands.
Here, low numbers of grains are considered so that several flows can be performed, allowing
to explore a large range of parameters. To keep large enough simulated cells, systems are two
dimensional.

The granular material is an assembly ofn disks of massm and of diameterd ± 20%. This
uniform polydispersity prevails crystallization. Grains interact merely through direct contact,
without long range forces neither intersticial fluid effect. The normal contact forceN between
two grains is split into three components which are expressed as function of the normal deflec-
tion or apparent interpenetrationh, and the normal relative velocitẏh:

N(h) = knh + ζḣ−
√

4knN ch. (1)

The visco-elatic repulsion introduces the normal stiffnesskn related to the Young modulusE of
grains (kn ∼ Ed), and a damping parameterζ which leads to energy dissipation. Considering
a binary collision between two similar grains,ζ is related to the Newton restition coefficiente

: ζ =
√

2mkn(−2 ln e)/
√

π2 + ln2 e. Models of cohesive interactions due to van der Waals
forces (Desjardinet al., 1975; Johnsonet al., 1971), capillary forces (Bocquetet al., 2002) or
solid bridges generaly add to the repulsive force an attractive forceNa(h) which precise form
represents the physical origin of the interaction, sometimes involing longe range forces and/or
hysteresis. The simple forme adopted here,Na(h) = −√4knN ch, does not describe one of the
three previous interactions, but merely represent their common feature giving rise to a maximal
attractive forceN c for the contacts. Futhermore, grains are frictional. As usual, the tangential
contact forceT is described by a Coulomb condition enforced with the sole elastic part of the
normal force,|T | ≤ µknh, with µ the friction coefficient between grains, so that friction is non
null total normal force is null.T is related to the relative tangential displacementδ: T = ktδ,
with a tangential stiffness coefficientkt. There is not rolling friction.

Two flow geometries are studied : the plane shear without gravity, and the rough inclined
plane (see figures 1). In both cases the flows are simulated in a cell of lengthL and heightH us-
ing periodic boundary conditions along the flow direction (x). Plane shear flows are performed
prescribing both pressureP and shear ratėγ through Lees-Edwards boundary conditions along
the transverse directiony. The top and bottom cells move with a velocity±V (t), which is
adapted at each time stept to maintain a constant shear rateγ̇ = V (t)/H(t). The control of the
pressure is achieved by allowing the dilatancy of the shear cell alongy : Ḣ = (P − P0)L/gp,
wheregp is a viscous damping parameter, andP0 is the average pressure in the shear cell.
Steady state corresponds to〈P0〉 = P . Flows down rough inclined are driven by gravity−→g .
Grains constitute a layer of thicknessH flowing along a rough inclined wall (slopeθ), made
of contiguous grains sharing the characteristics of the flowing grains : same polydispersity and
mechanical properties (especially same cohesion), but without rotation.

Both grains and flow geometries are described by a list of independent dimensional pa-
rameters. It is convenient to use dimensional analysis to extract dimensionless numbers which
express the relative importance of different physical phenomena and enable quantitative com-
parison with real materials. Grains are described byd, m, e, µ, kn, kt and N c. d and m
respectively constitute the length and mass scales. The values ofe, µ andkt/kn does not sig-
nificantly affect the propeties of dense cohesionless ganular flows, as soon ase 6= 0, e 6= 1,
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Figure 1:Flow geometries : (a) plane shear and (b) rough inclined plane. Rough walls (black grains),
(—) periodic boundary conditions.

µ 6= 0 andkt ∼ kn (Silbert et al., 2001; da Cruzet al., 2005). Consequently, we fixe the fairely
realistic valueskt/kn = 0.5 andµ = 0.4, ande = 0.1 which corresponds to a rather dissipative
material but favors convergence toward steady states. The flows down inclined plane involves
the gravity−→g , the slopeθ and the thicknessH of the flowing layer, whilst the plane shear is
described by the prescribed pressureP , the prescribed shear rateγ̇, and the viscous damping
parametergp. The dimensionless numbergp/

√
mkn = 1 is chosen, so the time scale of the

fluctuations ofH is imposed by the material. da Cruzet al. (2005) have shown that shear rate
of cohesionless grains is controled by the soleinertial numberI :

I = γ̇

√
m

P
, (2)

which compares the inertial time
√

m/P with the shear time1/γ̇. A small inertial number (I .
10−3) corresponds to thequasi-staticregime where the grain inertia is not relevant. Inversely, a
large value (I & 0.3) corresponds to thecollisional regime where grains interact trough binary
collisions. In between these extrems, we focus on thedense regime(10−2 . I . 0.3) for which
grain inertia is important within a contact network percolating through particles. Cohesion
intensity is usualy measure by the Granular Bond NumberBog (Nase et al., 2001) which
compares the maximum attractive force with the grain weight :Bog = N c/mg. For plane shear
flows without gravity, we define a second dimensionless numberη which comparesN c with the
average normal forcePd due to the pressure :

η =
N c

Pd
. (3)

3 Constitutive law

Plane shear without gravity leads to homogeneous shear state where the effective friction coef-
ficient µ∗ = τ/P (ratio of tangential and normal stresses),I andη are constant over space and
time. For each cohesion intensityη, different shear statesI are prescribed andµ∗ is measured
(Figure 2 a). It appears that the constitutive law of cohesionless grains (da Cruzet al., 2005),
i.e. a linear increases ofµ∗(I) (seeη = 0 on figure 2 (a)), can be generalized to cohesive grains,
but with the parametersµ∗s andb strongly enhanced by cohesion (figure 2 b) :
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Figure 2: Constitutive law of cohesive grains. Plane shear flow : (a)µ∗(I) for different values of
cohesion intensityη = 0 (¤), 10 (◦), 30 (M), 50 (O), 70 (¦); (b) µ∗s(η) (¤) andb(η) (◦) ; comparison
between measurements from homogeneous plane shear flows and flows down inclined :µ∗(η) for I =
0.01 (c), 0.025 (d),0.05 (e),0.1 (f).

µ∗(I, η) ' µ∗s(η) + b(η)I. (4)

Let us now consider the flow down a slopeθ of a layerH ≈ 30d of cohesive grains, for
various cohesion intensityBog between0 and200 and various slope. Without cohesion, such
a flow reach a steady and uniform regime in a large range of slope, accelerate for higher slope
and stop bellow a non null critical slope. These regimes still exists for cohesive grains, although
critical slope strongly increases. For steady and uniform regime, friction exactly offsets the
gravity driven force, and the solid fraction remain constant along the depth, so that stresses
follow an hydrostatic profile :[P (y), τ(y)] ∝ g(H − y) [cos θ, sin θ] (Gdr Midi , 2004; da
Cruz et al., 2005). Thus, grains within such a flow are submitted to a shear withµ∗ = tan θ
prescribed by the slope, and constant along depth. Furthermore, since the pressure increases
along the depth, the cohesion numberη increases when approaching to the free surface,η(y) ∝
Bogd/ ((H − y)).

Then the local constitutive law of the material can be deduced through the measurement of
I(y) andη(y) for various slope, i.e. variousµ∗. To reach this aim, steady and uniform flows are
initially performed at a given slope for variousBog, then slope is decreased (or increased) at a
low enough rate so that flows can be considered as steady and uniform at each time step, until the
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Figure 3: Steady and uniform cohesive flow down inclined : velocity profilev(y) (in
√

gd units) and
inertial number profileI(y) for various Granular Bond NumberBog, and various slopeθ (details on
graphics).

flows stop (or until the flow accelerated). The figures 3 plot the velocity profile and the profile
of inertial number for various slope and variousBog. Without cohesion (Bog = 0), velocity
profiles follow the Bagnold scalinġγ(y) ∝ (H − y), since the inertial number is constant along
the depth, excepted for the first bottom layers whereI increases due to the proximity of the
wall, and the first free surface layers whereI diverges due to the low pressure (da Cruzet al.,
2005; Gdr Midi , 2004). With cohesive force, there appears a plugged layer at the free surface
where the shear rate drop to zero. The thickness of this layer increases asBog increases. This
breakdown of the Bagnold scaling, observed by Brewsteret al. (2005), is evidenced by the
inertial number which is no more constant along depth, and drops to zero in the plugged surface
layer.

Figures 2(c-f) plotµ∗(η) for variousI, and compare the results obtained using inclined plane
with the constitutive law measured using plane shear flows. Results are in good agreement, al-
though data from inclined plane are scattered. This is not surprising since they are not averaged
over time, neither over transverse direction. The great difference between these two geometries
is that the shear rate is prescribed in plane shear whereas shear stress is prescribed in flows down
inclined plane. As a consequence, large value ofI and strong cohesion, which can be explored
using plane shear cannot be reached within flow down inclined since the most cohesive part of
the flow is plugged.

4 Conclusions

This numerical study provides new insights about dense flows of cohesive grains. First, homo-
geneous plane shear flows have been performed, prescribing various values of two dimension-
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less number which control the shear state (inertial number) and the cohesion intensity (cohesion
number). This method gives a direct access to the constitutive law of cohesive grains, which can
be expressed in a simple form similar to the one of cohesionless grains : the effective friction
coefficient still linearly increases with the inertial number but is strongly enhanced as cohesion
intensity increases. Then, the consequence of such a behavior have been pointed out in the case
of cohesive flows down a slope. As soon as the cohesion intensity increases when approach-
ing to the free surface, the shear rate drop to zero in this area which leads to plugged flows.
The comparison between constitutive law measured within homogeneous plane shear flows and
within flows down inclined reveals a good agreement. Nevertheless, the bottom layers are af-
fected by the roughness so that they cannot be described by the sole constitutive law.

The reference Rognonet al. (2005) gives more details about plane shear of cohesive grains,
focusing on the strong interplay between constitutive law and the properties at the scale of the
grains and of the contact network.
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