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Using molecular dynamics simulations, we study the plane shear flow of an assembly of slightly polydisperse
disks, at controlled pressure and shear rate, without gravity. We use biperiodic boundary conditions to avoid
wall perturbations. We add to the usual interaction term (elasticity, friction and dissipation) a cohesive force of
the Van der Waals type. The properties of this system depend on two dimensionless numbers. The first one is
related to the shear state imposed to the material. The second one characterizes the intensity of the cohesion. In
steady homogeneous shear flows, we measure the variations of the solid fraction and of the effective friction as
a function of those two numbers, from which we deduce a viscoplastic constitutive law. Moreover, the grains
agglomerates in transient clusters when the cohesion number increases. The analysis of the space and time
correlations shows a structural transition when the cohesion force becomes larger than the confinement force.

1 INTRODUCTION

Dense flows of cohesionless granular materials
have been recently the focus of various experimental
and numerical studies (GDR MIDI 2004). Within the
simple plane shear geometry, with prescribed pressure
and shear rate, it was possible to identify the consti-
tutive law, that is to say the dependency of the stress
components on the shear rate (da Cruz et al. 2005). In
particular, the integration of the friction law in Saint-
Venant codes allows large scale simulations of granu-
lar flows (Pouliquen and Forterre 2002; Naaim et al.
2004).

However, in various granular materials such as
snow (Bouchet et al. 2003), humid grains (Tegzes
et al. 2002) or powders (Castellanos et al. 1999), co-
hesion forces between grains can not be neglected.
Discrete numerical simulations give access to the in-
fluence of these forces on the rheology of an assembly
of grains (Mei et al. 2000; Nase et al. 2001; Iordanoff
et al. 2005). In this paper, we present the simulation
of the plane shear flow of an assembly of cohesive
grains. We first identify the two parameters control-
ling the simulated system : the shear state and the co-
hesion intensity. Then we measure the dependencies
of the constitutive law on the cohesion intensity. Last,

we relate those macroscopic observations to the evo-
lution of the microstructure.

2 SIMULATED SYSTEM

The granular material is a two dimensional assem-
bly of disks of average diameterd and average mass
m. A small polydispersity (20%) is introduced to
prevent crystallization. It is submitted to plane shear,
without gravity, so that the stress distribution is uni-
form. Both shear ratėγ and pressureP are prescribed
by bi-periodic boundary conditions (Radjai and Roux
2002; Gilabert et al. 2005) (Fig.1). The use of these
boundary conditions avoids wall perturbations (Ior-
danoff et al. 2005). The shear cell (heightH, length
L) is repeated periodically along the two directions.
The control of the pressureP is achieved by allowing
the expansion of the shear cell alongy : the evolution
of H is given by :Ḣ = (P − P0)L/gP , wheregP is
a viscous damping parameter, andP0 is the average
pressure in the shear cell. Steady state corresponds to
〈P0〉 = P . The top and bottom cells move with a ve-
locity±V (t), which is adapted to maintain a constant
shear rate :̇γ = V (t)/H(t). The granular shear state
is controlled by a single dimensionlessI, parameter
called inertial number (da Cruz et al. 2005), ratio of



inertial to shear times :

I = γ̇

√
m

P
. (1)

In this paper we focus on the dense regime (I ∈
[0.025 ; 0.3]), where the contact network percolates
through the cell.
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FIG. 1. Bi-periodic boundary condition (I = 0.1).(a)η = 0, (b)
η = 2.

The shear is simulated by standard molecular dyna-
mics method adapted to granular materials (Roux and
Chevoir 2005). The contacts are visco-elastic (stiff-
nesskn and viscositygn), frictional (friction coeffi-
cientµ) and cohesive. The cohesion force is a normal
van der Waals type force, equal to the product of the
interfacial energyγ and the contact area (length in
two dimension) (Matuttis and Schinner 2001; Pree-
chawuttipong 2002). The total normal forcefn is
a function of the normal interpenetrationh : fn =
knh + gnḣ− γ

√
2hd. According to previous parame-

tric studies (da Cruz et al. 2005),kn, gn andµ have a
very small influence on cohesionless grain flows. We
shall assume this holds for cohesive grain flows. The
simulations presented in this paper were done with
µ = 0.4 andgn = 102 (corresponding to a restitution
coefficient of0.1 in a binary collision). Moreover, we
chosekn/P = 104, which corresponds to the limit of
rigid grains.

With this cohesion model, the maximum traction
force isFc = γ2d

2kn
. We introduce a dimensionless co-

hesion numberη as the ratio ofFc over the typical
confining forcePd :

η =
γ2

2knP
. (2)

This dimensional analysis predicts a regime of low
cohesion whenη ≤ 1 and a regime of a high cohe-
sion whenη ≥ 1 (η = 0 corresponds to cohesionless
grains).

The grains are randomly deposited without contact
in the shear cell. Then pressureP and shear ratėγ
are imposed. After a sufficient amount of time, the
flow reaches a steady homogeneous shear state, which
does not depend on the initial configuration, characte-
rized by constant time-averaged solid fractionν, shear
rate and stress tensor. We measure the macroscopic
constitutive law and the microstructure in those steady
flows.

3 CONSTITUTIVE LAW
We call “dilatancy law” the variations of the solid

fraction as a function ofI and η (Fig.2 (a)).ν de-
creases approximately linearly withI, starting from a
maximum valueνmax :

ν(I, η) ' νmax(η)− aI. (3)

νmax strongly depends on the cohesion numberη :
νmax(η) ' 0.81 − 0.03η while the slopea varies
slowly with η.

We call “friction law” the variations of the effective
friction coefficientµ∗ (ratio of the shear stressS to the
pressureP ) as a function ofI andη (Fig.2 (b)). For
small cohesion (η ≤ 1), µ∗ increases approximately
linearly withI, starting from a minimum valueµ∗min :

µ∗(I, η) ' µ∗min(η) + bI. (4)

For η ≤ 1, µ∗min andb are nearly constant. For larger
cohesion, we first observe a sudden increase ofµ∗min,
for η between1 and2. Then, forη ≥ 3, the effective
friction increases again, but the friction law (Eqn. (4))
is no more valid.

For small cohesion (η ≤ 1), those measurements
generalize what has been observed in cohesionless
granular materials (da Cruz et al. 2005). Then, from
the dilatancy and friction laws, it is possible to deduce
a visco-plastic constitutive law. But they evidence a
transition of behavior, above a critical cohesion num-
berη ' 1, in agreement with the prediction of dimen-
sional analysis. Such a transition was observed by Ior-
danoff et al. (2005) in a confined layer. However, we
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notice that this transition is not apparent on the dila-
tancy law. We shall now interpret this transition on the
basis of microstructural observations.
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FIG. 2. (a) Dilatancy law, (b) friction law.η = 0(¦) ; 0.2 (4) ;
0.5(5) ; 1(/) ; 1.5(◦) ; 2 (¤) ; 3 (.)

4 MICROSTRUCTURE
Fig.1 (b) shows that as the cohesion increases, the

granular material becomes more heterogeneous, and
is made of dense clusters separated by voids. This
point was also observed in ref. Mei et al. (2000).
Consequently, the average solid fraction is decreasing
as the granular material is becoming more porous. For
a very strong cohesion (η ≥ 3), the material is frac-
tured in two parts. As a way to characterize quanti-
tatively the increasing heterogeneity of the granular
material, we now present measurements of space and
time correlations.

4.1 Spatial heterogeneity
At each time step, we perform a radical tessela-

tion (Annic et al. 1994) : the Voronoı̈ polygone around

each grain corresponds to the points which are clo-
ser from this grain than from any other grain. Then,
the local solid fraction around each grain is defined
as the ratio of the areas of the grain and of its Vo-
ronöı cell. This defines the field of solid fractionν(~r).
The characteristic length scale of the heterogeinities
(both clusters and voids) is deduced from the auto-
correlationF (~R) of the fluctuating solid fraction field
δν(~r) :

F (~R) =
〈δν(~r)δν(~r + ~R)〉

δν2
. (5)

We observe thatF is isotropic, and apart from a small
peak aroundR = d, decreases approximately expo-
nentially with R (Fig.3(a)) :F (R) ' exp(−R/Lc).
The correlation lengthLc remains smaller than the
size of a grain for small cohesion, and then suddenly
increases forη ≥ 1 (Fig.3 (b)).
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FIG. 3. Spatial heterogeneity : (a) Correlation function (η =
0; 0.5 (black line ; 1(/) ; 1.5(◦) ; 2 (¤) ; 3 (.)), (b) Length scale
(I= 0.025(•) ;0.05(N) ;0.1(¥) ; 0.2(H) ; 0.3(¨)).
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4.2 Persistence of contact
Starting from a population of contacts at timet, we

define the functionP (T ) as the proportion of contacts
that are still active at timet + T (even if they may
have been broken in the meanwhile). This is similar to
the so-called topological correlation function defined
in ref. Choi, Kudrolli, Rosales, and Bazant (2004) to
measure the diffusion in granular flows. This function
should decrease from unity to zero with timeT . The
characteristic time of this decrease defines a persis-
tence timeTp of the contacts. For cohesionless grains,
we predict thatTp should be of the order of the shear
time 1/γ̇ in the quasi-static regime and should de-
crease to the collision time in the dynamic regime.
Consequently, in the dense flow regime, the average
strainD = γ̇T should be more relevant than the time
T . Indeed, we have observed that the curves measured
for various inertial numbers collapse when drawn as
a function of the average deformationD.

We observe thatP decreases approximately expo-
nentially withD (Fig.4(a)) :P (D) ' exp(−D/Dp).
For cohesionless grains in the dense regime,Dp is
of the order1 (Fig.4(b)). ThenDp strongly increases
with the intensity of the cohesionη. This indicates
that the average lifetime of the clusters becomes lar-
ger than the shear time. This is consistent with the ob-
servation of the fracturation of the granular material
for strong cohesion.

5 CONCLUSION
Considering homogeneous steady shear flows and

a simple cohesion model, we have measured the in-
fluence of cohesion on the rheology of granular mate-
rials. A viscoplastic constitutive law is deduced from
the dilatancy and the friction law. As the cohesion in-
creases, the grains agglomerates in transient clusters,
which leads to a progressive expansion of the mate-
rial. The analysis of the space and time correlations
shows a structural transition above a crtical cohesion
threshold, associated to a sudden increasze of the ma-
croscopic friction. The quantitative understanding of
the relation between the microsstructure and the rheo-
logical law remains an open question.

Références
Annic, C., J.-P. Troadec, A. Gervois, J. Lemaitre, M. Ammi, and

L. Oger (1994). Experimental study of radical tesselation of
ensembles of discs with size distribution.J. Phys. I 4, 115–
125.

Bouchet, A., M. Naaim, F. Ousset, H. Bellot, and D. Cauvard
(2003). Experimental determination of constitutive equa-
tions for dense and dry avalanches : presentation of the set-
up and first results.Surveys in Geophysics 24, 525–541.

Castellanos, A., J. Valverde, A. Perez, A. Ramos, and P. Watson
(1999). Flow regimes in fine cohesive powders.Phys. Rev.
Lett. 82, 1156–1159.

0 2 4 6 8 10
0,01

0,1

1

P

D(a)

1 2 3 4
0

1

2

3

4

5

6

7

8

Dp

(b)

FIG. 4. Persistance of contact. (a)P (D) η = 0 (¦) ; 1(/) ; 2(¤) ;
3 (.). (b) Dp(η).

Choi, J., A. Kudrolli, R. Rosales, and M. Bazant (2004). Dif-
fusion and mixing in gravity-driven dense granular flows.
Phys. Rev. Lett. 92, 174301.

da Cruz, F., M. Prochnow, J.-N. Roux, and F. Chevoir (2005).
Dense granular flows : Friction and jamming. Inin these
proceedings.

GDR MIDI (2004). On dense granular flows.Euro. Phys. J. E 14,
341–365.

Gilabert, F., J.-N. Roux, and A. Castellanos (2005). Structural
changes and plasticity in loose cohesive granular packings.

Iordanoff, I., N. Fillot, and Y. Berthier (2005). Numerical study
of a thin layer of cohesive particles under plane shearing.
Powder Tech.. to be published.

Matuttis, H. and A. Schinner (2001). Particle simulation of co-
hesive granular materials.International Journal of Modern
Physics C 12, 1011–1021.

Mei, R., H. Shang, O. Walton, and J. Klausner (2000). Concen-
tration non-uniformity in simple shear flow of cohesive
powders.Powder Tech. 112, 102–110.

Naaim, M., F. Naim-Bouvet, T. Faug, and A. Bouchet (2004).
Dense snow avalanche modeling : flow, erosion, deposi-
tion and obstacle effets.Cold Regions Science and Techno-
logy 39(2-3), 193–204.

4



Nase, S., W. Vargas, A. Abatan, and J. McCarthy (2001). Dis-
crete characterization tools for cohesive granular material.
Powder Tech. 116, 214–223.

Pouliquen, O. and Y. Forterre (2002). Friction law for dense gra-
nular flow : application to the motion of a mass down a
rough inclined plane.J. Fluid Mech. 453, 133–151.

Preechawuttipong, I. (2002).Modelisation of the mechanical be-
haviour of cohesive granular media. Ph. D. thesis, Univer-
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