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Using discrete numerical simulations, we measure the spatial heterogeneity in dense granular flows, and identify
transient rigid clusters immersed in an assembly of free grains. We measure the density and average size of the
clusters as a function of the ratio of inertial to shear times, and show that they invade the granular flow in
the quasi-static limit. Within this biphasic picture, the transmission of stress takes place through both the fluid
phase and the rigid clusters, which induces a non local behavior. In the case of homogeneous shear, we deduce
an equation of state and a friction law in agreement with discrete numerical simulations.

1 INTRODUCTION

Recent experimental and numerical studies have
allowed the measurement of rheological laws in
dense granular flows (Pouliquen and Chevoir 2002;
GDR MIDI 2004; da Cruz et al. 2005). Several stu-
dies have revealed strong correlations of motion and
force (Radjai and Roux 2002; Bonamy et al. 2002;
Mueth 2003; Chambon et al. 2003; Ferguson et al.
2003; Pouliquen 2004). The observation of those dy-
namic heterogeneities have motivated the develop-
ment of various non-local models (Pouliquen and For-
terre 2001; Andreotti and Douady 2001; Chevoir et al.
2001; Lemaitre 2002; Ertas and Halsey 2002; Raj-
chenbach 2003; GDR MIDI 2004; Picard et al. 2005).
Following a previous model (Mills et al. 1999; Bo-
namy and Mills 2003), we describe dense granular
flows as transient rigid clusters immersed in a viscous
fluid made of free grains interacting through colli-
sions. Using molecular dynamics simulations descri-
bed in Rognon et al. (2005), we identify candidates
for those rigid structures, and measure their characte-
ristics. Then we propose a rheological biphasic model
with a non-local coupling term between the viscous
fluid and the rigid clusters. At the end, we discuss the
prediction of this model for jamming.

2 DENSE GRANULAR FLOWS
We consider two-dimensional steady homogeneous

shear flows (plane shear without gravity) of an as-
sembly of frictional inelastic rigid disks of diame-
ter d and massm, where both pressureP and shear
rate γ̇ are prescribed. Then, discrete numerical si-
mulations (da Cruz et al. 2005) have shown that the
flow regime is governed by the dimensionless num-
berI, called inertial number, ratio of the inertial time
τi =

√
m/P to the shear timeτs = 1/γ̇ :

I = γ̇

√
m

P
. (1)

LargeI correspond to the dynamic regime, where the
grains interact through binary uncorrelated collisions,
while smallI correspond to the quasi-static regime,
where the grains interact through a dense network of
enduring contacts. In discrete simulations, approxi-
mately linear variations of the average solid fraction
ν and of the effective friction coefficientµ∗, ratio of
shear stressS to pressureP , are measured as a func-
tion of I :

{
ν ' νm − aI,

µ∗ ' µ∗s + bI,
(2)
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with νm ' 0.8, µ∗s ' 0.2, a ' 0.3 and b ' 1.0 (for
frictional grains). This rheological law in the interme-
diate regime is visco-plastic, and we now try to un-
derstand the contributions associated to collisions and
to the enduring contacts. In contrast with previous bi-
phasic approach based on the contact network (Radjai
et al. 1998; Lemaitre 2002; Volfson et al. 2003), we
shall focus on the spatial heterogeneity.

3 SPATIAL HETEROGENEITY
We first interpret the variation of the average so-

lid fraction as the result of a balance between a com-
paction rate(νm − ν)/τi and a dilatancy rateαν/γ̇,
so thatν = νm/(1 + αI) ' νm−ανmI, in agreement
with Eqn. (2).

However, we notice strong fluctuations of the solid
fraction within the granular flow. As a way to charac-
terize this spatial heterogeneity, we measure in dis-
crete simulations (Rognon et al. 2005) the local solid
fraction νi around a graini as the ratio of the grain
surfaceπd2/4 to the surface of its Voronoı̈ cell. The
distribution ofνi is shown in Fig.1 for various inertial
number.

FIG. 1: Distribution of local solid fractions (I = 0.025
(¥), I = 0.1 (◦), I = 0.3 (H).

Then we distinguish two populations of grains :
those withνi ≥ νm and in contact with a neighbor
grain constitute clusters, while the others are conside-
red free. Pictures of these clusters are shown in Fig.2.

We calln the fraction of grains belonging to clus-
ters, andf ' nν/νm the solid fraction of clusters. We
consider thatn is the result of a balance between a
compaction rate(1− n)/τi and a dilatancy rateβnγ̇,
so thatn = 1/(1 + βI). Consequently, we predict
that :

f(I) ' 1

(1 + αI)(1 + βI)
. (3)

FIG. 2: Picture of the clusters : (a)I = 0.025, (b) I =
0.1.

The result of the measurement off(I) is shown in
Fig.3a.f(I) strongly decreases withI but does not
tend to unity in the quasi-static limit. This indicates
that a lower solid fraction threshold should be choo-
sen to distinguish between free grains and clusters.

We observe a distribution of clusters of various
size, characterized by their number of grainsNc

(”mass”) and gyration radiusRc. Fig.3b shows that
the gyration radius follows the following scaling law
as a function of mass :

Rc ∼ ND
c , (4)

with an exponentD ' 0.57. From the ”mass” dis-
tribution, we measure the following variation for the
average mass (Fig.3c) :

〈Nc〉 ∼ 1/I, (5)

from which we deduce〈Rc〉 ∼ 1/ID. This means that
the cluster size diverges in the quasi-static limit.

4 RHEOLOGICAL LAW
Within this biphasic approach, the shear stress is

the sum of the contributionsSF of the free grains and
SC of the clusters, weighted by their solid fraction :
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FIG. 3: Characterization of the clusters : (a) Solid
fraction f(I), (b) Scaling relation between massNc

and sizeRc (I = 0.025 - ¥ ; I = 0.05 - ◦ ; I = 0.1 - N ;
I = 0.2 - ♦ ; I = 0.3 - ¨) (c) Average mass〈Nc〉(I).

S = (1− f)SF + fSC . (6)

Our estimation ofSF is based on the usual ar-
gument in the collisional regime (Haff 1983) : the
grains exchange a typical momentummγ̇d, with a fre-
quency equal to their fluctuating velocityδv divided
by the average (not smallest) distance between neigh-
bor grains' (1/ν− 1)d. In the dense regime,s tends
to a non-zero value, so that :

SF = AF m(δv/d)γ̇. (7)

In the collisional regime, the fluctuating velocity is
deduced from the energy equation (δv ∼ γ̇d), but dis-
crete numerical simulations rather showδv ∼ I−1/2d
in the dense regime (da Cruz et al. 2005).

To evaluateSC , our basic assumption is that the
clusters are rigid structures through which the forces
are transmitted. ThenSC is the sum of a quasi-static
termtanφP inside the cluster (with the internal fric-
tion tanφ), and of a coupling termΣ between the
clusters and the free grains. The clusters are tran-
sient structures, created by the sudden ”freezing” of
a group of free grains. The lifetime of a cluster of
size Rc is of the order of the propagation time of
a solidification wave along the cluster ((Rc/d)τi).
ThenΣ is given by the typical momentum transmit-
ted through the cluster during its lifetime and over
the one-dimensional cut of the cluster ((Rc/d)D−1d).
The transmitted momentum is the sum of the momen-
tum mγ̇d of the (Rc/d)D grains which are suddenly
frozen. Consequently, the coupling stress is evaluated
as :

Σ = AC(m/τi)γ̇. (8)

This expression does not depend on the cluster size,
so that it should hold for a population of clusters of
various sizes.

The expression for the total shear stressS is
consistent both with the Eqn. (7) in the collisional re-
gime, whenf → 0, and with the friction law in the
dense limit Eqn. (2) whenf → 1 (with µ∗s = tanφ
andAC = b).

5 DISCUSSION
More work is needed to characterize those transient

rigid clusters (choice of solid fraction threshold, mea-
surement of the lifetime...).

The previous discussion concerned homogeneous
shear flow. Then, the rheological law remains appa-
rently ”local”, even if non-local transfer of momen-
tum through the cluster takes place. But in the case
of an heterogeneous shear distribution (plane shear
with gravity, vertical chute, inclined plane flow...), the
inertial numberI and hence the characteristics of the
clusters may vary along the shear gradient. A mea-
surement of the clusters would be useful and a gene-
ralization of the previous model must be written. For
steady flows down a rough inclined plane, the inertial
number is aproximately constant within the flowing
layer (da Cruz et al. 2005) (except near the rough
wall), so that the previous apparently local model ap-
plies. However, as the inclinationθ decreases, the ave-
rage cluster size increases and when it reaches the
heightH of the flowing layer, non-local mechanisms
should have a stronger influence (GDR MIDI 2004).
This defines a curveHnl(θ) ∼ (θ− φ)−D reminiscent
of theHstop(θ) curve (Pouliquen 2004). The jamming
mechanism should be described properly and should
take into account the interaction of the clusters with
the rough wall.

In the case of a confined flow, such as plane shear
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flow between two walls distant ofH, when the ave-
rage cluster size becomes comparable toH, conti-
nuous steady flow is no more possible. A transition
should occur for a critical inertial numberIc, depen-
ding onH : jamming if the shear stress is prescribed,
and intermittencies if the shear rate is prescribed. This
is indeed observed in discrete simulation of confined
plane shear flow (da Cruz et al. 2005).

We think that this kind of model may apply to
other concentrated particulate systems (colloidal sus-
pensions, emulsions, foams...) (Farr et al. 1997; Cates
et al. 1998; da Cruz et al. 2002; Picard et al. 2005).
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