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Abstract

The understanding of the dense granular flow regime (intermediate between quasi-static and collisional regimes) has recently
progressed significantly. Discrete numerical simulations have provided detailed informations on the flow of assemblies of disks in
various geometries (homogeneous plane shear, annular shear and inclined plane). In the case of cohesionless quasi mono-dispersed
and rigid grains, the analysis of the dependencies of the effective friction coefficient, ratio of shear to normal stress, on the shear state
(defined by the shear rate and pressure) and on the mechanical characteristics of the material has made possible the formulation
of a local constitutive law. This has shown the crucial role of a dimensionless parameter, called inertial number, which rules the
friction law in the dense regime. This law remains true in the case of bi-dispersed flows, as early as the average diameter of the
grains in taken into account. It is also true in the case of cohesive grains, once a second dimensionless number, characterizing the
intensity of cohesion, is introduced.
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1. Introduction

The understanding of granular flows is a major chal-
lenge both in geophysics and in industry [1,2,3]. A major
goal of the rheophysical studies is to evaluate the rheolog-
ical laws as well as their physical origin at the scale of the
grains and of their interactions [4,5]. We restrict our anal-
ysis to assemblies of grains interacting through direct con-
tacts [6] (neglecting the influence of the interstitial fluid),
and to dense flows, an intermediate regime between quasi-
static deformations of soil mechanics [4] and rapid and di-
lute flows, which can be described by the kinetic theory of
dense gases [7]. Such dense flows of dry grains have been
actively studied during the last decade [8,9]. We shall in-
sist here on the results obtained through discrete numeri-
cal simulations [6], which have been confronted to exper-
imental measurements on model materials. We shall first
describe our general approach. Then we shall explain the
friction law measured in various geometries for cohesion-
less quasi mono-dispersed grains. We shall then discuss the
influence of polydispersity and cohesion. In conclusion, we
shall emphasize the subjects on which the research now fo-
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cuses.

2. General approach

Discrete numerical simulations (we have used standard
molecular dynamics methods) [6,10] provide microscopic
informations, at the level of the contact network, difficult
to access experimentally. The problem has been studied in
two-dimensional geometry, on an assembly of disks of av-
erage diameter d and areal mass ρg (m = ρgπd2/4). The
contact law between grains is described by a normal elastic
stiffness kn (assuming linear elasticity), a normal viscous
damping parameter associated to the normal restitution
coefficient e in binary collisions, and a coulombian friction
coefficient µ. In a first step, the grains are cohesionless and
slightly polydispersed (±20%). Our general approach con-
sists in applying a shear to the material, and to measure
locally the velocity u, the shear rate γ̇, the solid fraction ν
and the components of the stress tensor, the shear stress τ
and the pressure P (we observe that the two normal stress
components are nearly equal). We have studied three ge-
ometries. The first one (Fig.1a) is the plane shear in the ab-
sence of gravity with or without walls. This is the simplest
one since then the state of the material is homogeneous
(except near the walls). We control the shear rate and the
pressure. We note x the flow direction and y the orthogonal
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direction. Periodic boundary conditions are applied along
x (the length of the system is of the order of fifty grains)
and along y without walls (the width H of the system is
a few tens of grains). The second geometry (Fig.1b) is the
annular shear. The material is confined between an inner
cylinder of radius Ri which has a rotation velocity Ω and an
outer cylinder of radius Re which applies a radial presssure
P . We note r and θ the radial and orthoradial directions.
Periodic boundary conditions are applied along θ [11]. The
pressure is approximately constant along r, while the shear
stress decreases as 1/r2. The third geometry (Fig.1c) is the
inclined plane. A layer of height H flows down a slope θ
under the influence of gravity g. We note x the flow direc-
tion, along which periodic boundary conditions are applied,
and y the orthogonal direction (y = 0 corresponds to the
bottom). In those three geometries, the walls must be suf-
ficiently rough to exclude sliding velocity. This roughness
is made of contiguous grains sharing the same geometrical
and mechanical characteristics than the flowing grains. We
shall not describe in this paper the particular behavior of
the material in the vicinity of the walls (structuration in
layers), nor the influence of the roughness scale which rules
the friction at the wall and the possible sliding [11]. We only
consider steady (independent of time) and uniform (inde-
pendent of x or θ) flows, so that space and time averages
are performed. In the first geometry, an average along y is
also performed (taking apart the first layers near the walls).
In the two other geometries, we measure the dependencies
along r or y of the various quantities.

3. Friction law and inertial number

In the limit of rigid contacts, there remain two character-
istic times in the problem : the inertial one τi = d

√
ρg/P

and the shear one τc = 1/γ̇, from which it is natural to
define a dimensionless parameter, called inertial number I:

I =
τi

τc
= γ̇d

√
ρg

P
. (1)

We expect that the flow properties essentially depend on
I, except for possible other dependencies associated to the
mechanical and geometrical characteristics of the material.
The value of I allows to classify the flow regimes. As I in-
creases, the average contact time decreases and the mate-
rial dilates. For I ≤ 10−3, the material tends to the quasi-
static regime, in which it is decribed as an elasto-plastic
solid (the so-called critical state of soil mechanics) [4]. For
I ≥ 10−1, it approaches the collisionnal regime, where it
may be described through extension of the kinetic theory
of dense gazes to dissipative particles [7]. The intermedi-
ate regime (10−3 ≤ I ≤ 10−1) corresponds to dense flows,
where the material is above its flow threshold, in a liquid
rather than gazeous state. The grain motions are strongly
correlated and the assumption of uncorrelated binary col-
lisions used for dilute gazes is clearly inappropriate. There
exists a percolating contact network, strongly fluctuating
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Figure 1. Flow geometries : (a) Plane shear between two rough walls
(with the network of normal forces), (b) Annular shear, (c) Inclined
plane (with the velocity and solid fraction profiles).

both in space and time. In the following, we shall be inter-
ested in the effective friction coefficient of the material, a
local quantity defined by µ∗ = τ/P . In the plane shear ge-
ometry [10], we could evidence a robust friction law, with
the approximate following expression (Fig.2) :

µ∗(I) ' µ∗min + bI. (2)

This means that the friction coefficient has a minimum
value µ∗min in the quasi-static regime (which can be iden-
tified to the internal friction in the critical state), increases
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approximately linearly in the dense regime, and seems to
saturate in the collisional one. The shear stress is then the
sum of a contribution associated to the Coulomb law in
the plastic state, and of a viscous contribution associated
to collisions, with a viscosity unusually proportional to the
square root of the pressure : τ ' µ∗minP + b

√
ρgP γ̇. A

granular material in the dense flow regime then appears as
a visco-plastic fluid. A complementary information is the
dilatancy law, which describes the variations of the solid
fraction as a function of I [10]: when I increases, ν slowly
decreases, approximately linearly, from its maximum value.
In the rigid contact limit, apart from the extreme cases of
e close to 1 and/or µ close to 0, this constitutive law very
slightly depends on the mechanical characteristics of the
grains.

In the annular shear geometry [11,13], we have shown
that the same friction law is observed in the dense regime
(Fig.2). This provides a first explanation of the shear local-
ization. But, in this geometry, µ∗ decreases as 1/r2 from
its value at the inner cylinder, and consequently becomes
smaller than µ∗min far from it (possibly from r = Ri if
Ωd

√
ρg/P is sufficiently small). The material is then in the

quasi-static regime, and the shear localization may be ex-
plained by a different friction law, akin to creep flow acti-
vated by the fluctuations near the rough wall.
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Figure 2. Friction law in plane shear and annular shear geometries
for various (Ri −Re).

The friction law which has been identified in homoge-
neous shear may be used to predict the shear rate profile
within a steady dense flow down an inclined plane, for which
µ∗ = tan θ, which fixes the inertial number I and the mass
density ρ = ρgν inside the layer (Fig.1c). The pressure is
thus hydrostatic : P (y) = ρg cos θ(H − y). Approximating
tan θ ' θ and cos θ ' 1 and identifying µ∗ to tan φ ' φ,
the threshold flowing angle, it comes :

γ̇(y) '
√

νg (θ − φ)
bd

√
H − y. (3)

Taking into account the absence of sliding near the rough
base, one deduces the velocity profile and eventually the
flow law relating the average velocity V to the inclination
θ and to the height H of the flow :

V (θ, H) ' 2
5

√
νg

bd
(θ − φ) H3/2. (4)

Discrete numerical simulations [12,13,14,15] as well as
experiments [13,16,17] of flows down rough inclines are in
good agreement with those predictions, but is is further-
more observed that the threshold angles (jamming or un-
jamming) depend on the height [12,13,14,17]. The study
of a more complex situation, the spreading of a granular
mass down a rough slope [18], has revealed an impressive
comparison between the experiment and the numerical cal-
culation through the Saint Venant approach, when taking
into account the previous friction law (2). Another signif-
icant result is the crucial influence on the flow of the fric-
tional lateral walls [19,20]: when the flow rate in a chan-
nel is increased, a solid heap forms on which a superficial
layer flows. The slope of this heap and the height of the
flowing layer depend on the ratio of the two friction coeffi-
cients, internal and of the lateral walls, and on the width of
the channel. More detailed experimental studies, varying
the friction of the lateral walls, have shown that a three-
dimensional tensorial formulation of the friction law (2) is
able to predict the full three-dimensional velocity profile
inside the channel [20].

4. Influence of polydispersity

In real flows, the granulometry is often large. The conse-
quences on the rheological laws are not yet well understood.
We have studied the flow of a bi-disperse mixture down an
inclined plane [21], once a steady segregated state is ob-
tained. The material is a bi-disperse assembly of disks of the
same mass density : n1 small disks of average diameter d1

and n2 large disks of average diameter d2. This mixture is
characterized by the size ratio D = d2/d1 and by the areal
proportion of large grains S = (n2d

2
2)/(n2d

2
2 + n1d

2
1). The

roughness is made of neighboring small grains. Steady flows
are observed in a range θ −H which depends on the mix-
ture. The grains are organized in three layers: small grains
near the rough base, large grains near the free surface and
a mixture in the middle. We systematically observe a de-
crease of the shear rate in the upper part of the flow when
S and/or D increase. Furthermore, when S ≥ 3/4 and D ≥
3, we observe a strong increase of the shear rate near the
base. We relate this shear localization to the segregation
of the material. Considering Eq. 3, for given inclination θ
and height H, the shear rate must decrease as the inverse
of the grain diameter. More precisely, we have measured
locally, as a function of y, the effective friction coefficient
µ∗ and the inertial number I<d> obtained by considering
the average local size < d > of the grains. The plot of µ∗

as a function of I<d> drawn on Fig.3 shows that the fric-
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tion law (2) has the same qualitative shape in the case of
mixtures (but the parameters µ∗min and b are affected by
the composition of the mixture and by its interaction with
the roughness [11,22]):

µ∗(I<d>) ' µ∗min + bI<d>. (5)
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Figure 3. Friction law in a binary mixture as a function of S and D:
(◦) monodispersed case (±20%), (black ◦) bidispersed case.

5. Influence of cohesion

In various industrial and geophysical situations, cohe-
sion forces between grains cannot be neglected anymore.
They are usually classified in three groups according to
their physical origin : capillary forces [23], solid bridges [24],
and direct adhesion between the grain surfaces associated
to van der Waals forces, like in powders [25]. This cohe-
sion strongly affects the mechanical properties of a granu-
lar material [2,3]. The microstructure of a cohesive piling is
extremely sensitive to its preparation. The sample is more
or less heterogeneous due to the formation of clusters and
this loose structure is evidenced in plastic flows [26] or dur-
ing the compaction of the sample [27]. The cohesion also
strongly increases the flow threshold. But the dense flow
regime is still not well understood. In the case of very small
particles like powders, because of the strong influence of
the interstitial fluid, the granular material transits directly
from a solid to a suspension of fragile clusters [28]. How-
ever this dense regime has been observed experimentally in
dense snows made of grains of a few hundred microns [29]
or with wet glass beads [30]. We have studied the flow of
cohesive grains in the dense regime [31,32], following the
work of other research teams [33,34,35,36,37], but with an
emphasis on the quantitative determination of the rheolog-
ical laws.

The cohesion models add to the usual repulsion force an
attractive force Na(h), function of the normal deflection of
the contact h, and which shape depend on the physical ori-
gin of the cohesion. We note N(h) = Ne(h) + Na(h) the
total static normal force, N c the maximum attractive force
and hc the deflection at equilibrium (for which N(hc) =
0). The range of the attractive force is assumed null, and
we do not take into account any hysteresis. We have cho-
sen a simple cohesion model which takes into account the
main characteristic of cohesion models, that is to say the
maximum attractive force N c : Na(h) = −√4knN ch. This
leads to introduce a second dimensionless number η which
measures the cohesion intensity, ratio of the maximum at-
tractive force on the average normal force due to pressure
(in 2D):

η =
N c

Pd
. (6)

This parameter is equivalent to other dimensionless num-
bers proposed in the literature [27,34], like the granular
Bond number Bog = Nc/(mg) in presence of gravity.

In the homogeneous shear geometry, we have measured
the dependencies of µ∗ as a function of the two dimension-
less numbers I and η (Fig.4a). We have observed that the
friction law (2) may be extended to cohesive grains :

µ∗(I, η) ' µ∗min(η) + b(η)I. (7)

The two functions µ∗min(η) and b(η) have the same shape
(Fig.4b) : they strongly increase with the cohesion intensity.

For a flow down an inclined plane, the pressure increases
with the depth z measured from the free surface and the
cohesion intensity strongly increases near the free surface:
η(z) ' Bog/(z/d). We thus predict the presence of a su-
perficial plugged layer where the shear rate drops to zero,
with a width' (Bog/10)d, while the deep layer keeps a non
cohesive behavior. This effect, significant for Bog ≥ 10, is
indeed observed in discrete numerical simulations [38,32]
and could be evidenced experimentally using small enough
glass beads (d ≤ 1 mm) and water as the interstitial fluid.

6. Conclusion

In this short paper, we have not described the measure-
ment of other quantities accessible to discrete numerical
simulations (organization of the contact network, correla-
tions, fluctuations. . . ), the comparison with experimental
studies, or other phenomena such as the fluid-solid transi-
tion (jamming or unjamming). We conclude on the direc-
tions on which research is progressing : the account of three-
dimensional geometry, the study of more complex mate-
rials (shape of the grains, more realistic cohesion models,
larger granulometric distribution, influence of an intersti-
tial fluid. . . ), and of more complex flow geometries (inter-
action with obstacles, mixing. . . ).
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Figure 4. Friction law of cohesive grains : (a) µ∗(I) for η = 0 (¤),
η = 10 (◦), η = 30 (4) and η = 50 (O), (b) µ∗min(η) (¤) and b(η)
(¥).
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